
MNRAS 484, 1598–1615 (2019) doi:10.1093/mnras/stz090
Advance Access publication 2019 January 16

AMICO galaxy clusters in KiDS-DR3: weak lensing mass calibration

Fabio Bellagamba,1,2‹ Mauro Sereno ,1,2‹ Mauro Roncarelli ,1,2 Matteo Maturi,3

Mario Radovich,4 Sandro Bardelli,2 Emanuella Puddu,5 Lauro Moscardini,1,2,6

Fedor Getman,5 Hendrik Hildebrandt7 and Nicola Napolitano5,8

1Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, via Gobetti 93/2, I-40129 Bologna, Italy
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ABSTRACT
We present the mass calibration for galaxy clusters detected with the AMICO code in KiDS
DR3 data. The cluster sample comprises 7000 objects and covers the redshift range 0.1 < z <

0.6. We perform a weak lensing stacked analysis by binning the clusters according to redshift
and two different mass proxies provided by AMICO, namely the amplitude A (measure
of galaxy abundance through an optimal filter) and the richness λ∗ (sum of membership
probabilities in a consistent radial and magnitude range across redshift). For each bin, we model
the data as a truncated NFW profile plus a two-halo term, taking into account uncertainties
related to concentration and miscentring. From the retrieved estimates of the mean halo masses,
we construct the A–M200 and the λ∗–M200 relations. The relations extend over more than 1
order of magnitude in mass, down to M200 ∼ 2 (5) × 1013 M� h−1 at z = 0.2 (0.5), with small
evolution in redshift. The logarithmic slope is 2.0 for the A–mass relation, and 1.7 for the
λ∗–mass relation, consistent with previous estimations on mock catalogues and coherent with
the different nature of the two observables.

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmology: observa-
tions – large-scale structure of Universe.

1 IN T RO D U C T I O N

Ongoing and upcoming photometric surveys will increase the cur-
rent census of clusters of galaxies by orders of magnitude, pushing
the limits of detection towards lower masses and higher redshifts.
In order to exploit this amount of information for astrophysics and
cosmology, it is fundamental to know how to relate an appropriate
measure of galaxies, accessible in photometric observations, to the
total mass of clusters, mostly made by dark matter. Unfortunately,
the relation between the total mass and the galaxy properties in a
cluster is hidden in complex astrophysical processes, the details of
which are difficult to model theoretically or through simulations.
For this reason, there is not an obvious mass proxy in the galaxy
distribution and the scaling between the mass and any galaxy
observable can only be calibrated empirically. Many different mass
proxies have been suggested in the literature, mainly based on the
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number of (red) galaxies inside a given radius (Andreon & Hurn
2010; Rykoff et al. 2012), their luminosities (Mulroy et al. 2014) or
photometric stellar mass estimates (Pereira et al. 2018).

Galaxy clusters are detected in photometric data by running
algorithms which search for significant cluster-scale overdensities
in the galaxy distribution. In this procedure, usually one or more
observables related to the abundance and properties of galaxies are
measured and used in the identification of the clusters. Although it is
possible to measure a posteriori any mass proxy from the observed
galaxy distribution, it is natural to study the mass–observable
relation for these quantities that are automatically included in the
output cluster catalogue, as has been done for example by Wiesner,
Lin & Soares-Santos (2015), Parroni et al. (2017), and Simet et al.
(2017). Moreover, the selection function of the sample with respect
to the observable(s) used in its definition will likely be simpler to
assess and is usually one of the fundamental results of the procedure.

To obtain reliable mass estimates for the clusters, it is convenient
to take advantage of weak gravitational lensing, the imprint on

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/484/2/1598/5289902 by IN
AF –IASF Bologna user on 08 M

arch 2019

http://orcid.org/0000-0003-0302-0325
http://orcid.org/0000-0001-9587-7822
mailto:fabio.bellagamba2@unibo.it
mailto:mauro.sereno@unibo.it


AMICO clusters in KiDS: wl mass calibration 1599

background galaxies’ observed shapes of the light deflection due
to the intervening cluster potential. Gravitational lensing depends
on the total matter distribution in the cluster and provides mass
estimates which do not rely on any assumption on the physical
state of the clusters, differently from methods which depend on
the gas properties, such as X-ray observations or the Sunyaev–
Zel’dovich effect on the CMB. Moreover, gravitational lensing is
often one of the primary objectives of current and future photometric
surveys, thus allowing the calibration of optical observables of
photometrically selected clusters within the same data set.

In this paper, we focus on clusters detected in the Kilo-Degree
Survey (KiDS; de Jong et al. 2013) by AMICO (Adaptive Matched
Identifier of Clustered Objects), an optimal filtering algorithm
presented in Bellagamba et al. (2018) and recently selected as an
official detection algorithm for the Euclid survey (Laureijs et al.
2011; Adam et al. in preparation). The KiDS is an ESO public survey
being performed with the OmegaCAM wide-field camera (Kuijken
2011) mounted at the VLT Survey Telescope (VST; Capaccioli &
Schipani 2011). KiDS is designed to observe a total area of 1500
deg2 in the ugri bands. The third Data Release (DR3) includes 440
deg2 (de Jong et al. 2017). In Maturi et al. (2018), a catalogue of
8000 clusters at 0 < z < 0.8 detected by AMICO in KiDS DR3 data
will be presented and validated.

The primary scope of this paper is to determine the calibration
between the main observable measured by AMICO, namely the
amplitude, and the cluster masses. The amplitude is a measure
of the cluster galaxy content in units of the input model, which
is constructed from known data. In Bellagamba et al. (2018),
it has been shown that the amplitude is a reliable mass proxy
on simulations, provided the model calibration is correct. In the
detection procedure, AMICO also calculates the probability for
each galaxy to be a member of each detected structure. We will
take advantage of this feature to build a second optical observable
for the same catalogue, as the sum of membership probabilities in
a given radial and magnitude range, and we will also investigate its
properties as a mass proxy.

Weak lensing analyses of KiDS data have already been performed
to constrain cosmological parameters through cosmic shear (Hilde-
brandt et al. 2017), to derive density profiles of GAMA galaxy
groups (Viola et al. 2015) and of their satellites (Sifón et al. 2015),
the stellar-to-halo mass relation in galaxies (van Uitert et al. 2016a)
and to study through and ridges in the galaxy density field (Brouwer
et al. 2018). In this work, we will use KiDS shear data to build excess
surface density profiles for clusters detected by AMICO in the same
photometric data. As the weak lensing signal-to-noise ratio for each
object is typically very small, we will use a stacking approach
and measure the mean profile and mass of ensembles of clusters
selected according to their optical properties. We will then derive
the mass–observable relations for both our optical mass proxies,
taking into account the systematic uncertainties in the selection of
background galaxies, in the photometric redshifts estimate and in
the shear measurement.

The paper is organised as follows. In Section 2, we present
the two data sets used in this analysis: the cluster catalogue and
the galaxy catalogue. In Section 3, we detail the method used to
extract the stacked differential density profiles of the lenses from
galaxy shear estimates. The matter distribution used to model the
lenses, and the parameters on which it depends, are described in
Section 4. In Section 5, we outline how the parameters are derived
from the comparison between data and model. In Section 6, we
quantify the systematic uncertainties that affect our analysis, and in
Section 7 we describe the method to derive parameters of the mass–

observable relation from the weak lensing results. In Section 8,
we show the results for the weak lensing profile of each cluster
bin, and for the mass–observable relations in our cluster sample.
Some considerations on the different observables employed and
their relation with previous works in literature are given in Section 9.
A summary and our final remarks are presented in Section 10.

For the purpose of this analysis, we assume a flat �CDM
cosmology with H0 = 70 Km s−1 Mpc−1 and �m = 0.3. Halo
masses are given as M200,c, the mass enclosed in a sphere with radius
r200,c, where the mean density is 200 times the critical density of the
Universe at the corresponding redshift.

2 DATA

Our work is based on data from KiDS Data Release 3 (de Jong et al.
2017), covering 440 tiles with an area of 1 deg2 each, and observed
in all four survey filters (ugri). KiDS consists of two patches, one
in the equatorial sky (KiDS-N) and the other around the South
Galactic Pole (KiDS-S), and DR3 includes complete coverage of
the Northern GAMA fields (Driver et al. 2011). The limiting 5σ

magnitudes in the four bands are, respectively, 24.20, 25.09, 24.96,
and 23.62, in a 2 arcsec aperture. The data processing and catalogue
extraction are done by a KiDS-optimised pipeline running in the
Astro-WISE environment (Verdoes Kleijn et al. 2011; McFarland
et al. 2013).

2.1 Cluster catalogue

The catalogue of galaxy clusters has been extracted from KiDS DR3
data with AMICO, an optimal filtering algorithm which has been
presented and tested on simulations in Bellagamba et al. (2018).
A full description and validation of the cluster catalogue can be
found in Maturi et al. (2018). The cluster detection with AMICO
on DR3 is an improvement of the work by Radovich et al. (2017)
on DR2, both in terms of total area (440 against 114 deg2) and for
the evolution in the detection algorithm with respect to the previous
matched filter method (Bellagamba et al. 2011). AMICO looks for
cluster candidates by convolving the 3D galaxy distribution with a
redshift-dependent filter, constructed as the ratio of a cluster and
a noise model. This convolution generates a 3D amplitude map,
whose peaks represent the detections. For each detection, AMICO
provides the angular position, redshift, S/N, and amplitude. The
amplitude is a measure of cluster galaxy abundance in units of the
cluster model, defined as

A(θ c, zc) ≡ α−1(zc)
Ngal∑
i=1

Mc(θ i − θ c, mi) pi(zc)

N (mi, zc)
− B(zc), (1)

where Mc is the cluster model (expected density of galaxies per unit
magnitude and solid angle) at redshift zc, N is the noise distribution,
pi(z), θ i and mi are the photometric redshift distribution, the sky
coordinates and the magnitude of the ith galaxy, respectively,
and α and B are redshift-dependent functions that provide the
correct normalization and subtraction of the background. The
cluster model Mc is constructed by a luminosity function and a
radial profile, following the formalism shown in Bellagamba et al.
(2018). Its parameters have been extracted from the observed galaxy
population of SZ-detected clusters (Hennig et al. 2017), as detailed
in Maturi et al. (2018). Moreover, AMICO assigns to each galaxy a
probability to be a member of a given detection according to

P (i ∈ j ) ≡ Pf,i × Aj Mj (θ i − θ j , mi) pi(zj )

Aj Mj (θ i − θ j , mi) pi(zj ) + N (mi, zj )
, (2)
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Figure 1. Redshift distribution of the cluster sample extracted by AMICO
on KiDS DR3 data. The striped bins indicate clusters not used in this
analysis.

where Aj, θ j , and zj are the amplitude, the sky coordinates and
the redshift of the jth detection, respectively, and Pf, i is the field
probability of the ith galaxy before the jth detection is defined (see
Bellagamba et al. 2018 for all details).

In the application to KiDS data, AMICO was run considering
galaxy coordinates, r-band magnitude and the full photometric
p(z) distribution. The complete catalogue comprises 8092 candidate
clusters at redshifts z < 0.8. In the following, we will consider only
clusters in the redshift range 0.1 ≤ z < 0.6. We discarded objects at
z < 0.1 because of the reduced lensing power and those at z ≥ 0.6
because the density of background galaxies in KiDS data does not
allow a robust lensing analysis. This selection leaves us with 6962
objects. Their distribution in redshift and amplitude is shown in
Figs 1 and 2. In the following, we will divide the cluster sample in
three redshift bins: 0.1 ≤ z < 0.3, 0.3 ≤ z < 0.45, 0.45 ≤ z < 0.6.
We applied to the cluster redshifts a correction of −0.02(1 + z), to
remove the bias found in Maturi et al. (2018).

2.2 Galaxy catalogue

Sources that are located behind clusters appear distorted by the
gravitational potential of the intervening matter. We are therefore
interested in their shapes (which encode the information about
the lens matter distribution) and their redshifts (which weigh the
lensing information). Here, we will review the main properties of
the catalogue. For a more thorough discussion of the shear and
redshift properties of the galaxy sample, we refer the reader to de
Jong et al. (2017) and Hildebrandt et al. (2017).

2.2.1 Shape measurements

The shear analysis of KiDS data was presented and discussed in
Kuijken et al. (2015) and Hildebrandt et al. (2017). The shape
measurement was done with LENSFIT (Miller et al. 2007, 2013;
Fenech Conti et al. 2017), a likelihood based model-fitting method
which has been successfully used in the analyses of other datasets,
such as CFHTLenS (Miller et al. 2013) and the Red Cluster Survey
(Hildebrandt et al. 2016). Only r-band data have been used for shear
measurement, as they are the ones with better seeing properties and
highest source density. The multiplicative shear calibration error
estimated from simulations is on the order of 1 per cent (Fenech
Conti et al. 2017). The final catalogue provides shear measurements

Figure 2. Amplitude distribution of the cluster sample used in the analysis,
extracted by AMICO on KiDS DR3 data. As the selection is performed with
an S/N threshold, the amplitude threshold is not constant in redshift. This
produces the increase in cluster counts from the first to the second bin in
amplitude.

for 15 million galaxies, with an effective number density of neff

= 8.53 galaxies arcmin−2 (following the definition by Heymans
et al. 2012) over a total effective area of 360.3 deg2.

2.2.2 Photometric redshifts

The properties of KiDS photometric redshifts have been presented
and discussed in Kuijken et al. (2015) and de Jong et al. (2017).
Photometric redshifts from four-band (ugri) data have been derived
with the Bayesian template-fitting method BPZ (Benı́tez 2000;
Hildebrandt et al. 2012). When compared with spectroscopic
redshifts from GAMA (Liske et al. 2015), the resulting accuracy is
σ z ∼ 0.04(1 + z), as shown in de Jong et al. (2017).

3 W EAK LENSING PROFILE

3.1 Selection of background sources

In order to extract the shear profile of a given lens, we first need to
select the background galaxies, i.e. sources that lie behind the lens
and whose observed shape is perturbed by the intervening mass
distribution. If galaxies belonging to the cluster or in the cluster
foreground are mistakenly considered as background, the measured
lensing signal can be significantly diluted (see e.g. Broadhurst et al.
2005; Medezinski et al. 2007). A possible approach is to consider
all galaxies as suitable background sources, weigh them according
to their redshift probability distribution, and then account separately
for the inevitable inclusion of some cluster members and foreground
sources (Gruen et al. 2014; Melchior et al. 2017). We instead choose
to follow a more conservative approach described in Sereno et al.
(2017), which aims at excluding foreground and cluster galaxies
from the catalogue, performing cuts based on photometric redshift
distributions and colours. To this aim, a first selection is performed
excluding the galaxies whose most likely redshift is not significantly
higher than the lens one. Galaxies with photometric redshift zs pass
this cut if

zs > zl + �z, (3)
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where zl is the redshift of the lens and �z is set to 0.05, similar to the
typical uncertainty on photometric redshifts in the galaxy catalogue
and well larger than the uncertainty on the cluster redshifts.

A galaxy enters the background catalogue if it passes this
preliminary selection and fulfils at least one of the two following
criteria, based on photo-zs and on colours, respectively.

3.1.1 Photo-z selection

The criterion based on the photometric redshift distribution aims at
keeping only galaxies which have a well-behaved p(z) and have a
negligible probability of being at redshift equal to or lower than the
cluster. So the following selections are made:

(i) zs,min > zl + �z

(ii) ODDS ≥ 0.8
(iii) 0.2 ≤ zs ≤ 1.0.

The value of zs,min is the lower bound of the region including
the 2σ (95.4 per cent) of the probability density distribution. By
requiring that it is bigger than zl + �z, we exclude galaxies whose
nominal redshift is higher than the lens but have a non-negligible
probability of being at a redshift lower than or equal to the one of the
cluster. The ODDS parameter quantifies which fraction of the p(z)
is concentrated around the peak value, making this threshold useful
in excluding distributions with significant secondary solutions or
wide tails (Coe et al. 2006; Bellagamba et al. 2012). The third
selection encloses the range for which we expect the most reliable
photometric redshift estimations given the available set of bands
(ugri) and thus excludes galaxies whose redshift estimation is less
robust.

3.1.2 Colour selection

The drawback of the photo-z selection described above is the
exclusion of a significant fraction of galaxies located behind the
cluster, that would be useful to increase the shear signal, due to the
stringent requirements on the properties of the p(z) distribution. We
recover part of this population, while keeping a very low fraction
of contaminants, by invoking a selection based on galaxy colours,
as done for example by Medezinski et al. (2010) and Medezinski
et al. (2017). Specifically, the cut we perform is the following:

(g − r < 0.3) ∨ (r − i > 1.3) ∨ (r − i > g − r).

This cut was originally proposed by Oguri et al. (2012) based on the
properties of the galaxies in the COSMOS catalogue (Ilbert et al.
2009) to select galaxies at z �0.7, and has been subsequently tested
and used by Covone et al. (2014) and Sereno et al. (2017, 2018a).
In particular, Sereno et al. (2017) showed that the 97 per cent of the
galaxies with high quality spectroscopic redshifts selected by this
cut in the CFHTLS-W1 and W4 fields have zspec > 0.63.

This selection leaves us with an effective number density 3.15
arcmin−2 of available background galaxies. The distribution as a
function of zs of the selected sources can be seen in Fig. 3. As
expected, the two selection criteria are mostly complementary: most
of the photo-z selected sources lie at z < 0.6, while the sources
selected by colours have a significant tail at z > 1.

3.2 Measuring the shear profiles

The shear is linked to the differential surface density profile of the
lens via (Sheldon et al. 2004)

Figure 3. Effective number density as a function of zs of the total shear
catalogue (black) and of the selected background sources (filled grey). The
red and blue histograms indicate the selected samples according to the two
criteria employed, based on photo-zs and on colours, respectively. This plot
considers the source most probable redshift only. For a more realistic view
on the source redshift distribution, see Section 6.1.

�	(R) = 	̄(< R) − 	(R) = 	critγ+, (4)

where γ + is the tangential component of the shear, 	(R) is the mass
surface density, 	̄(< R) is its mean inside radius R, and 	crit is the
critical density for lensing (Bartelmann & Schneider 2001),

	crit ≡ c2

4πG

Ds

DlDls
, (5)

that depends on the angular diameter distances between observer
and source (Ds), observer and lens (Dl), and lens and source (Dls).

In practice, for each lens we consider all the background galaxies
selected as in Section 3.1, and we compute the shear signal in
the tangential direction with respect to the centre of the cluster.
We stress that the shear γ is actually unaccessible to observations.
What we measure instead is an estimate of the reduced shear g =
γ /(1 − κ), where κ ≡ 	/	crit (Bartelmann & Schneider 2001).
Anyway, in the so-called weak lensing regime where κ � 1, we can
approximate γ ∼ g. This allows us to construct the observed �	

profile by computing

�	(Rj ) =
(∑

i∈j (wi	
−2
crit,i) γ+,i 	crit,i∑

i∈j (wi	
−2
crit,i)

)
1

1 + K(Rj )
, (6)

where j is the considered radial annulus with mean radius Rj, and wi

is the weight assigned to the measurement of the source ellipticity
(Sheldon et al. 2004). The function K(Rj) is the average correction
due to the multiplicative noise bias in the shear estimate and is
computed from

K(Rj ) =
∑

i∈j (wi	
−2
crit,i) mi∑

i∈j (wi	
−2
crit,i)

, (7)

where mi is the multiplicative noise bias for the i-th galaxy (see
Fenech Conti et al. 2017 for details).

To compute the critical density for the ith galaxy 	crit,i, we
used the most probable redshift of the source given by BPZ. It
is possible to use the full p(z), and marginalize over the real source
redshift to derive an effective (inverse) 	crit as done, for example, by
Sheldon et al. (2004) or Viola et al. (2015). However, this procedure
assumes an exact knowledge of the full p(z), including the tails
of the distribution, which are often poorly determined, as shown
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by Hildebrandt et al. (2017). We will anyway use the full p(z) to
estimate the systematic uncertainty related to the source redshift in
Section 6. We will instead ignore the uncertainty in the lens redshift,
which is typically 0.02(1 + z) (Maturi et al. 2018) and whose impact
on 	crit is negligible with respect to the source one.

In the analysis, the excess surface density was computed for 14
logarithmically spaced radial bins in physical units from 0.1 to 3.16
Mpc h−1.

3.3 Stacking

For the vast majority of the clusters in the sample, the signal-to-noise
ratio in the lensing data is too low to constrain the density profile,
and thus to measure a reliable mass. For this reason, we will measure
the mean mass for ensembles of objects selected according to their
observables and their redshift, as will be detailed in Section 8. To
this end, we define a weighted sum of the lensing signal for classes
of objects as follows.

The differential density profile for the Kth cluster bin is estimated
as

�	K (Rj ) =
∑

k∈K Wk,j �	k(Rj )∑
k∈K Wk,j

, (8)

where k runs over the clusters in the bin, and Wk, j is the total weight
for the jth radial bin of the kth cluster,

Wk,j =
∑

i

wi	
−2
crit,i (9)

and i runs over the background galaxies in the jth radial bin.
The covariance matrix for the stacked signal is estimated with

a bootstrap procedure with replacement, as we expect the error to
be dominated by shape noise. We resampled the source catalogue
10 000 times.

4 L E N S MO D E L

We model the stacked mass density profile of our clusters with
a smoothly truncated Navarro Frenk White (NFW) distribution
(Baltz, Marshall & Oguri 2009)

ρ(r) = ρs

r/rs (1 + r/rs)2

(
r2

t

r2 + r2
t

)2

, (10)

where ρs is the typical density, rs is the scale radius, and rt is
the truncation radius. The scale radius is usually parametrized
as rs = r200/c200, where c200 is the concentration parameter. The
normalization of the above distribution can be expressed in terms of
M200. The truncated version of the NFW is found to better describe
cluster profiles outside the viral radius in simulations than the
original NFW profile (Oguri & Hamana 2011). For our analysis,
we set rt = 3r200, following Sereno et al. (2017).

In addition to the halo profile described by equation (10), we
expect a contribution to the density profile due to matter in correlated
haloes. This is the so-called two-halo term and can be modelled as
(Oguri & Takada 2011; Sereno et al. 2017)

	2h(θ ; M, z) =
∫

ldl

2π
J0(lθ )

ρ̄m(z) bh(M; z)

(1 + z)3 D2
l (z)

Plin(kl; z), (11)

where θ is the angular radius, J0 is the zeroth order Bessel function
and kl = l/(1 + z)/Dl(z). This component depends on the halo bias
bh, for which we follow the prescription of Tinker et al. (2010) and
on the linear power spectrum Plin, which we computed according
to Eisenstein & Hu (1999).

A typical source of bias in cluster weak lensing analyses is
the misidentification of the centre of the lens. In our analysis, we
consider the position of the detection made by AMICO as the centre
of the cluster. As the detection is performed on a grid, there is an
intrinsic uncertainty related to the AMICO pixel size, which is <

0.1 Mpc h−1 (Bellagamba et al. 2018). Moreover, the centre of the
galaxy distribution may show some significant offset with respect to
the centre of mass (see e.g. George et al. 2012). A better knowledge
of the miscentring distribution of AMICO clusters would help

We parametrize this uncertainty by considering a model compo-
nent produced by haloes whose position has a non-negligible scatter
with respect to the assumed centre, as done for example in Johnston
et al. (2007) and in Viola et al. (2015). First of all, we define σ off as
the rms of the distribution of the misplacement of the haloes on the
plane of the sky. Assuming a Gaussian distribution, the probability
of a lens being at distance Rs from the assumed centre is then

P (Rs) = Rs

σ 2
off

exp

[
− 1

2

(
Rs

σoff

)2]
. (12)

The azimuthally averaged profile of a population of haloes mis-
placed by a distance Rs is given by (Yang et al. 2006)

	(R|Rs) = 1

2π

∫ 2π

0
	cen

(√
R2 + R2

s + 2RRs cos θ

)
dθ, (13)

where 	cen(R) is the centred surface brightness distribution derived
by equations (10) and (11). Finally, the mean surface density
distribution derived from a miscentred population of haloes is
obtained by integrating equation (13) along Rs and weighing each
offset distance according to equation (12):

	off(R) =
∫

P (Rs) 	(R|Rs) dRs. (14)

Our model for the halo can then be written as the sum of a centred
population and an off-centred one:

	1h(R) = (1 − foff)	cen(R) + foff	off(R), (15)

where foff is the fraction of haloes that belong to the miscentred
population. The subdivision of the model in a perfectly centred
component and a miscentred one aims at capturing the uncertainty
linked to the centring of the haloes. Other choices are possible, such
as considering the AMICO pixel scale as an intrinsic smoothing
scale. Future studies about the miscentring distribution of AMICO
clusters would help to improve this aspect of the model.

This model depends on four parameters (M200, c200, σ off, foff). An
example of the total profile can be seen in Fig. 4. As we limit our
analysis to the central 3 Mpc h−1, the two-halo term affects to a
small degree only the last radial bins. This makes our results less
dependent on the details of the halo bias model.

Even though we measure the shear signal from a radial distance of
0.1 Mpc h−1, in the analysis we will neglect the first three radial bins,
which is equivalent to consider only the range 0.2� R� 3 Mpc h−1.
The reason for this is two-fold. First of all, from the observational
point of view, measuring shear and photo-z close to the cluster centre
is made difficult by the cluster galaxies contamination. Furthermore,
the analysis of the shear signal close to the cluster centre is sensitive
to the contribution of the BCG to the matter distribution and to
deviations from the weak lensing approximation used in the above
derivation. This choice also alleviates the effects of miscentring.
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Figure 4. Differential projected density profile for a model with parameters
M200 = 1014 M� h−1, c = 3., foff = 0.3, σ off = 0.3 Mpc h−1, at redshift z

= 0.3. The arrows indicate the minimum and maximum radius used for the
comparison with data.

5 IN F E R E N C E O F M O D E L PA R A M E T E R S

Given a set of data D of the stacked differential surface density
profile �	obs(R) derived as in Section 3 and a model �	mod(R)
defined as in Section 4, the posterior probability of a set of
parameters θ = (M200, c200, foff, σoff) is given by Bayes’ theorem

P (θ |D) = L(D|θ )P (θ )

E(D)
, (16)

where L(D|θ ) is the likelihood of the data given the model, P (θ )
is the prior probability of the parameters and E(D) is the so-called
evidence, that does not depend on the parameters and that we can
ignore in this context. The likelihood in our problem is given by

L ∝ exp

(
− 1

2
χ2

)
, (17)

where

χ2 =
Nbin∑
i=1

Nbin∑
j=1

[�	obs(Ri) − �	mod(Ri)] C−1
ij

× [�	obs(Rj ) − �	mod(Rj )], (18)

C is the covariance matrix and Nbin is the number of radial bins in
the considered profile. The main source of off-diagonal terms in the
covariance matrix is correlated shape noise due to the fact that the
same galaxies enter different radial bins in different cluster profiles
(Mandelbaum et al. 2013; Sereno et al. 2015; Viola et al. 2015). We
expect this term to be fairly small in our case, as the mean radial
distance between cluster centres is larger than the limiting radius
for shear profiles (∼3Mpc h−1). In fact, the off-diagonal terms of
the resulting Cij are generally compatible with random noise over a
null signal. We therefore prefer to consider only the diagonal terms
in our analysis, to avoid complications related to the inversion of
a noisy estimate of the covariance matrix (see Hartlap, Simon &
Schneider 2007). The values of the diagonal terms Cii scale with
radius as R−2 as expected for shape noise variance in logarithmically
spaced bins.

In order to derive the posterior distribution of parameters from
a given stacked profile, we use MULTINEST (Feroz, Hobson &
Bridges 2009; Feroz et al. 2013), a code that implements a Nested
Sampling algorithm. This method allows an efficient exploration
of the posterior without the need for an initial guess or a burn-in

phase as in other Monte Carlo techniques. At first, a set of points is
drawn from the prior distribution, then at each iteration one point
from the sample is substituted by one with higher probability. The
procedure stops when the uncertainty in the evidence estimation
(and so, in the knowledge of the posterior) is below a user-defined
threshold.

In our analysis we assumed the following priors for the parame-
ters:

(i) log(M200/( M� h−1)) uniform between 12.5 and 15.5
(ii) c200 uniform between 1 and 20
(iii) foff uniform between 0 and 0.5
(iv) σ off uniform between 0 and 0.5 Mpc h−1.

These priors are meant to be conservative. For what concerns
miscentring, in Bellagamba et al. (2018) the typical miscentring of
AMICO detections on simulated data was <0.1 Mpc h−1. Studies
that compare optical detections to the center of X-ray emission
typically find foff ∼ 0.2 − 0.3 and σ off ∼ 0.2 Mpc h−1 (Rykoff et al.
2016; Oguri et al. 2018).

The main result of a MULTINEST run is a sample of the n-
dimensional posterior distribution, from which different estimators
and statistics can be computed. In the following, for each parameter,
we quote the mean and the standard deviation of the marginalised
posterior distribution as the resulting typical value and its uncer-
tainty.

Given the intrinsic degeneracy between the concentration c200 and
the miscentring described by σ off and foff, these three parameters
remain substantially unconstrained by the data. Therefore, we
will concentrate on the results about M200 in the following. The
complex modelling described in Section 4 is anyway necessary
to parametrise our ignorance about the other parameters and
marginalize over their possible values. In this way we minimize
the risk of biasing our results about M200, and we obtain realistic
errors that take into account uncertainties related to modelling and
miscentring.

6 SYSTEMATI C UNCERTA I NTI ES

Apart from the statistical uncertainty derived from the posterior
distribution of M200, there are other sources of uncertainty that
should be considered when deriving the mass–observable relation
from weak lensing data. In particular, three aspects of the analysis
are critical when measuring the signal: the selection of background
galaxies, the photo-z estimates and the shear measurement. Un-
certainties in the results of these procedures affect directly the
measurement of �	 from the data, so in order to derive their impact
on the mass estimation we should consider the relation between the
lensing mass and the excess density profile. Following Melchior
et al. (2017), one can define the logarithmic dependence of �	 on
M200 as

� = d log �	(M200)

d log M200
. (19)

Then we can relate the uncertainties on the mass to those on �	

as
δM200

M200
∼ 1

�

δ�	

�	
. (20)

In the range of radii and redshifts considered by our analysis,
assuming a realistic concentration c = 4, we verified that � ∼ 0.75
is a good approximation.

Other systematic uncertainties are related to the modelling of the
signal, i.e. the way a measured �	 is translated into M200. In the
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following, we discuss the choice of the analytic model, the non-
spherical symmetry of the stacked sample and the projections by
aligned haloes.

6.1 Background selection and photo-zs

6.1.1 Preliminary estimates

If any galaxy at a redshift equal to or lower than the cluster enters
its shear profile, it lowers the estimate of the signal, because its
shape is uncorrelated with the matter distribution in the cluster.
This is strictly true only if there are no intrinsic alignments, see
Heymans & Heavens (2003). Due to our conservative selection of
background galaxies, we do not expect a significant contamination
from foreground galaxies. For what concerns the photo-z cut, by
definition, given the constraint zs,min > zl we expect that only
2.3 per cent of the galaxies lie at a redshift lower or equal to
that of the cluster. Assuming idealized Gaussian distributions,
the additional �z (= 0.05) buffer, of the order of σ z, means
that 3σ of the p(z) are above zl, and reduces the fraction of
expected contaminants to 0.15 per cent. In case of biased and/or
non-Gaussian distributions, the resulting contamination can be
higher.

As per the colour–colour selection, Sereno et al. (2017) found
that in the CFHTLS galaxy sample only 3 per cent of the selected
galaxies with spectroscopic redshifts was at z < 0.63, which is
higher than the upper limit for our cluster sample (0.6). We can
thus conservatively consider the foreground contamination to be
�2 per cent, which according to equation (20) translates to a
2.7 per cent uncertainty on mass.

When computing the critical density for each cluster–source
pair (equation 5), we use the most likely redshift for the source
zs, neglecting the uncertainty related to the photometric redshift
measurement. We prefer not to deal with the low-probability tails
of the p(z), which are often not accurate and may influence severely
the retrieved 	crit for some galaxies. Nevertheless, the typical width
and shape of the photometric redshift distributions can be used to
estimate the uncertainty in the excess density profile due to photo-
z estimates. We do this by defining the integrated inverse critical
density as

〈	−1
crit〉 =

∫
dzs p(zs) 	−1

crit(zs, zl). (21)

We then compute for the selected sample of background galaxies
two estimates of 	crit: one derived with a point estimate of zs from
equation (5) and one obtained by using the full p(z) and inverting
equation (21). For each cluster redshift bin, we can compare the two
values of the mean 	crit for the background sample, considering
the distribution of cluster redshifts zl inside the bin. The relative
difference between the two estimates for each of the three cluster
redshift bins is, respectively, 0.041, 0.055, and 0.029. We use the
mean of these three values (4.2 per cent) as an estimate of the
systematic uncertainty related to the redshift distribution of the
background sources. This estimate considers effects both from bias
and scatter in the photo-z peaks.

In order to further assess our estimates on the systematics related
to background selection and photo-zs, we use two external cata-
logues: the composite spectroscopic catalogue used in Hildebrandt
et al. (2017) to calibrate the redshift distribution of the KiDS shear
sample and the COSMOS 30-band photo-z catalogue (Laigle et al.
2016).

6.1.2 Comparison with spec-z catalogue

We follow Hildebrandt et al. (2017) who calibrated the redshift
distribution of the KiDS shear sample with a spectroscopic sub-
sample, using the method presented in Lima et al. (2008). We
use the same technique to check the assumed redshift distribution
of our selected background against the spectroscopic one. As the
spectroscopic coverage is not uniform in magnitude space, each
spectroscopic object is assigned a weight which depends on the
magnitude-space distributions of the photometric sample and of
the spectroscopic sub-sample. Spec-z objects are up-weighted in
regions of magnitude space where they are under-represented with
respect to the full photometric sample and down-weighted in regions
of magnitude space where they are over-represented. In this way,
the effect of the selection function of spectroscopic objects is
suppressed.

As our background selection depends on the lens redshift zl, we
perform the comparison for three cluster redshifts, typical for the
redshift bins used in the analysis: zl = 0.2, 0.35, and 0.5. For
each redshift, we perform in the spectroscopic sub-sample the same
selection we did on the full shear sample, according to p(z) and
colours. We can then compare the weighted redshift distribution of
the spectroscopic sub-sample with the photo-z distribution of the
shear sample. Note that both distributions account for the LENSFIT

weights w introduced in Section 3.2: they are used explicitly in the
photo-z distribution and they enter the calculation of the magnitude-
space weights for the spec-z objects. The results are shown in the
left-hand panel of Fig. 5. We can see that for all three values of
zl there is a broad overlap between the two distributions, with the
spec-z one which is slightly less peaked at 0.7 < z < 0.9 and has a
larger tail at z > 0.9.

Following Medezinski et al. (2018), we can estimate the con-
tamination by foreground galaxies from the fraction of spec-z
distribution which lies at z < zl. We obtain a contamination fraction
of 0.4 per cent, 0.7 per cent, and 1.6 per cent for the three lens
redshifts, respectively.

The source redshift enters the lensing analysis via the critical
density 	crit (see equation 5), which, for fixed lens redshift, depends
on the ratio of angular diameter distances Dls/Ds. We then translate
the previous redshift distributions to distributions of Dls/Ds. They
are shown in the right-hand panel of Fig. 5, again for the same three
lens redshifts zl = 0.2, 0.35, and 0.5. The mean value of Dls/Ds for
the two samples differ by 1.6 per cent, 0.2 per cent, and 4.3 per cent,
respectively. This result is consistent with the systematic uncertainty
due to the source redshift distributions we derived in Section 6.1.1
(4.2 per cent) from photometric data only.

6.1.3 Comparison with COSMOS photo-z catalogue

The method presented before aims at removing the selection effects
from the considered spec-z distribution. A complementary tech-
nique is to make use of external high-quality photometric redshifts
for a complete sub-sample of galaxies. We can take advantage of
the overlap of one tile in KiDS DR3 with the COSMOS field, where
Laigle et al. (2016) derived photometric redshifts for half a million
galaxies with a precision σ z = 0.007 × (1 + z). The catalogue is
98.6 per cent complete for i+ < 25 (see their fig. 8), which is 1 mag
deeper than KiDS. We can thus assume that virtually each object in
the KiDS catalogue has a counterpart in the COSMOS catalogue.
In this way, we do not need to weight COSMOS galaxies, as done
by McClintock et al. (2018) and Miyatake et al. (2018). The results
of this section will depend on one KiDS tile only, but we do not
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AMICO clusters in KiDS: wl mass calibration 1605

Figure 5. Left: Redshift distributions of the background sample, as estimated from photometric redshifts (red line) or weighted spectroscopic redshifts of a
sub-sample of objects (blue line). The black dashed line represents the assumed cluster redshift, which is 0.2, 0.35, and 0.5 for the top, middle, and bottom
panel, respectively. Right: Distribution of Dls/Ds for the background sample, as estimated from photometric redshifts (red line) or weighted spectroscopic
redshifts of a sub-sample of objects (blue line). The dashed lines represent the mean Dls/Ds for the sample. The top, middle, and bottom panels refer to different
cluster redshifts, with zl = 0.2, 0.35, and 0.5, respectively.

introduce any uncertainty related to the weighting scheme. This test
nicely complements the previous one, where we weighted galaxies
from a spectroscopic sub-sample against the full KiDS catalogue.

In practice, for each KiDS background galaxy, we search for
COSMOS objects inside a radius of 1 arcsec. In the rare case of
a double match, we choose the COSMOS galaxy with the lowest
difference in r-band magnitude with respect to KiDS. In this way,
we obtain a counterpart for the 99 per cent of the objects. We can
then perform the same analysis we did in Section 6.1.2, again
considering three typical cluster redshifts 0.2, 0.35, and 0.5. The
comparison between the KiDS and COSMOS background redshift
distribution is shown in the left-hand panel of Fig. 6. We underline
that, since in this case we are considering a single KiDS tile, the
intrinsic redshift distribution may be different from the one shown
in Fig. 5. In fact, the distribution is slightly shifted towards higher
redshifts. The shape of the COSMOS distribution resembles the
KiDS one, but shows a tail at z > 1.5 which is missing in our data
and in the spec-z distribution shown in Fig. 5. The contamination
fraction we derive from this analysis is 0.6 per cent, 1.8 per cent, and
3.2 per cent, for the three lens redshifts, respectively, in remarkable
agreement with the one derived in the previous section and with
our preliminary estimation. We can then translate this redshift
distribution to a distribution in terms of Dls/Ds. The results are
shown in the right-hand panel of Fig. 6. The resulting bias is
0.8 per cent, 1.3 per cent, and 4.9 per cent for the three lens redshifts.

Again, this is in agreement with the previous measurement with a
spec-z counterpart and with our analytic estimation.

As an additional test, we can estimate the contamination as a
function of cluster radius, repeating the previous analysis only
for galaxies that enter the background sample for at least one
AMICO object. In this case, we consider as contaminants galaxies
with zCOSMOS < zl + 0.05. The redshift buffer we adopt is larger
than the typical uncertainty of cluster redshifts in the catalogue,
that is 0.02(1 + zl). This is likely to produce an overestimation
of the contamination fraction as some background but close-by
galaxies will be considered contaminants. As shown in Fig. 7, we
do not detect any significant radial dependence, and we see a good
agreement with our overall contamination estimation (2 per cent).
Our conservative exclusion of the inner 200 kpc from the shear
profile makes the effect of any residual radial dependence fully
negligible. This confirms that the additional contamination due to
cluster galaxies in the radial range of interest is compatible with our
expectations and taken into account in our systematic uncertainty.

6.2 Shear measurement

According to appendix D3 in Hildebrandt et al. (2017), the uncer-
tainty on the residual multiplicative bias in the shear estimates of
KiDS DR3 is 1 per cent. This is an improvement of a factor 3 with
respect to the previous Data Release. This uncertainty on the shear
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1606 F. Bellagamba et al.

Figure 6. Left: Redshift distributions of the background sample, as estimated from photo-zs by KiDS (red line) and COSMOS (blue line). The black dashed
line represents the assumed cluster redshift, i.e. 0.2, 0.35, and 0.5 for the top, middle, and bottom panel, respectively. Right: Distribution of Dls/Ds for the
background sample, as estimated from KiDS photometric redshifts (red line) and COSMOS ones (blue line). The dashed lines represent the mean Dls/Ds for
the sample. The top, middle, and bottom panels refer to different cluster redshifts, with zl = 0.2, 0.35, and 0.5, respectively.

Figure 7. Fraction of background contaminants as a function of radius, as
estimated from the COSMOS field. Empty points indicate radial bins not
used in the lensing analysis. The dashed black line represents the preliminary
estimate of Section 6.1.1.

estimate of each galaxy, divided by � (see equation 20), produces
an uncertainty on mass of 1.3 per cent, which is sub-dominant with
respect of those related to the selection of background galaxies and
the estimate of their redshifts. We note that the shear responsivities

have not been calibrated as a function of cluster radius, differently
from e.g. Miyatake et al. (2018).

6.3 Analytical modelling

If the stacked surface density profile does not follow the assumed
model, systematic biases will be introduced in the mass retrieved
from shear profiles. For what concerns the main halo, for masses
M200 < 5 × 1014 h−1, the expected error due to the choice of the
model is �1 per cent (Sereno, Fedeli & Moscardini 2016). At
larger scales, the model presented in Section 4 has been shown in
Oguri & Hamana (2011) to describe the surface density distribution
of cluster-sized haloes in simulations better than non-truncated
models. In particular, the model we use is effective in describing
the transition region between the main halo and the correlated
structures. Oguri & Hamana (2011) show that using a simple
NFW profile to fit a shear signal on these scales can produce
biases up to 10–15 per cent, depending on the maximum radius
considered. Thus, by truncating the main halo and by considering
the contribution from correlated structures, we alleviate the possible
mismatch between the real halo density profile and the model. For
comparisons between these models and real data, see e.g. Beraldo
e Silva, Lima & Sodré (2013) and Umetsu et al. (2014).

We evaluate the residual uncertainty related to halo modelling by
measuring how much the retrieved masses are sensible to the precise
definition of model details. Different prescriptions exist for the halo
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AMICO clusters in KiDS: wl mass calibration 1607

bias bh, which determines the two-halo term (equation 11). We test
the sensitivity of our results on bh by increasing the assumed values
from Tinker et al. (2010) by 10 per cent. We obtain a decrease in
mass which depends on mass and redshift, typically 1 per cent. A
similar test can be performed on the truncation radius rt, which we
kept fixed at rt = 3r200 during the analysis. We can vary it between
2.5r200 and 4r200, which is roughly the range of best-fitting values
in Oguri & Hamana (2011), depending on mass and redshift.1 We
find a systematic increase (decrease) in mass for lower (higher)
values of rt, of the order of 1 per cent. Considering these tests,
and residual per cent-level discrepancies between the model and
simulations shown in Oguri & Hamana (2011) around rvir (see their
fig. 3), we assume a 3 per cent systematic uncertainty due to halo
modelling.

6.4 Orientation and projections

The halo model we use assumes spherical symmetry. As real haloes
are typically ellipsoidal (Sereno et al. 2018b), the model is strictly
valid only if the orientation of the haloes in a stack is random.
Moreover, the two-halo term assumes a random distribution of
correlated structures. Both these assumptions may not be accurate
when dealing with optically selected cluster samples.

Dietrich et al. (2014) tested different optical cluster finders on
simulations and verified that they tend to select clusters with the
main axis along the line of sight. This is expected, as they produce
a larger observed galaxy number density contrast with respect to
the field distribution. The resulting stacked mass distribution can
be modelled as a prolate ellipsoid with the axis along the line of
sight elongated by a factor q ∼1.1. This result holds for all cluster
finders tested, which use different methodologies and observables.
Because of that, we can then safely assume the same for clusters
detected in Maturi et al. (2018) and analysed in this work, even
if AMICO was not tested in Dietrich et al. (2014). As lensing is
sensitive to the projected mass over the plane of the sky, masses of
haloes elongated along the line of sight are biased high. Dietrich
et al. (2014) derive this bias as 4.5 ± 1.5 per cent for q ∼ 1.1, with
the uncertainty related to concentration of the halo.

Secondary haloes aligned with the detected cluster can affect the
mass estimate too. In fact, the observed amplitude of a cluster may
be increased by the presence of other structures along the same
line of sight, which are not detected and therefore will be blended
in a single detection. Understanding how this effect influences the
recovered masses is not trivial. For an approximate but effective
estimation, we follow Simet et al. (2017) and Melchior et al. (2017),
where the bias in the mass measurement of a stacked sample has
been estimated as

δM

M
= p(ε − 0.5)

1 − p(ε − 0.5)
. (22)

Here, p is the fraction of haloes which suffer from projections and ε

characterizes the effective mass contribution of the projected halo.
Simet et al. (2017) set ε = 0.25 ± 0.15 to cover a realistic range of
possible contributions to the weak lensing mass by projected haloes.
To estimate p for our sample, we note that, as an effect of blending,
we expect to miss some objects which are aligned with the detected
ones, as verified with simulations in Bellagamba et al. (2018). The
projection ratio p can then be estimated as the fraction of expected

1Oguri & Hamana (2011) quote their truncation parameter in terms of rvir

instead of r200.

Table 1. Sources of systematic uncertainty in the mass calibration described
in Section 6.

Source �	 error (%) Mass error (%)

Background selection 2 2.7
Photo-z uncertainty 4.2 5.6
Shear measurement 1 1.3
Halo model – 3
Orientation and projections – 3

Total 4.8 7.6

aligned detections which we are missing. To this aim, we consider
for each object in our sample a cylinder with height equal to 3σ z

and radius equal to 1.5 times the assumed R200 of our model (see
Maturi et al. 2018). Comparing the density of detections inside these
cylinders to the average one, we find a decrement of 15 per cent.
We can then set this as the fraction of clusters p which suffer from
significant projections. Inserting this value in equation (22), the
resulting mass bias is −0.04 ± 0.02 per cent.

As projection effects due to blending of aligned structures
counterbalance those due to the triaxial structure of the main halo,
mass estimates do not need to be corrected. The residual uncertainty
is taken into account by adding a systematic error of 3 per cent to
our budget.

6.5 Final assessment of systematics

The comparisons performed in Sections 6.1.2 and 6.1.3, with differ-
ent methodologies and assumptions, confirmed our preliminary es-
timates of Section 6.1.1. Thus, we use those values in the following
as our systematic uncertainties. We also consider the terms related
to shear estimation discussed in Section 6.2, the halo modelling
(Section 6.3) and the halo triaxiality and projections (Section 6.4).
The adopted systematics are summarized in Table 1. The total
systematic uncertainty on the cluster masses is 7.6 per cent. We
note that here we do not treat systematics related to concentration
or miscentring because we include them in the model and thus mass
posteriors naturally contain these sources of uncertainty.

In the appendices, we show the results of additional tests we
performed to check the consistency of our results. In particular,
we show the comparison between the signal extracted from the
two selection criteria of background sources (Appendix A), the
cross-correlation between background sources and cluster lenses
(Appendix B) and two null tests: the lensing signal around random
positions and the radial profile of the cross-component of the shear
(Appendix C).

7 MASS– OBSERVABLE RELATI ON

We model the relation between the photometric observable O and
the weak lensing mass as

log
M200

1014 M� h−1
= α + β log

O

Opiv
+ γ log

E(z)

E(zpiv)
, (23)

where E(z) = H(z)/H0 and Opiv and zpiv represent typical values
of observable and redshift of the total sample, respectively. The
redshift evolution of the relation is accounted for by the factor
γ log E(z), following the approach by Sereno & Ettori (2015). For
each bin of clusters, we compute the typical value of the observable
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OK through a lensing-weighted average (Umetsu et al. 2014)

OK =
∑

k∈K WkOk∑
k∈K Wk

, (24)

where Wk is the total weight for the the kth cluster of the bin,

Wk =
∑

i

wi	
−2
crit,i (25)

and i runs over all the background galaxies of the kth cluster,
irrespective of the radial bin. We follow the same procedure to
calculate the typical redshift zK of each bin.

We build the covariance matrix CM for the mass estimates of the
cluster bins as

CM,ij = δijE
2
i + S2M200,iM200,j , (26)

where Ei represents the statistical error derived from the posterior
distribution of M200, and S is the systematic uncertainty derived
from the analysis in Section 6. The systematic errors are treated
as correlated, as they affect in a similar manner all cluster bins. In
practice, we sum in quadrature the uncertainties for background
selection, photo-zs and shear measurement, and we obtain S
= 0.076. This uncertainty is anyway sub-dominant with respect
to the one derived from the M200 posterior for all the bins. The
systematic error instead dominates the uncertainty on the intercept
of the mass–observable relation, as we will see in the next section.

The parameters α, β, and γ of the mass–observable relation of
equation (23) are obtained with a Bayesian analysis analogous to
the one presented in Section 5, where we derived the parameters
describing the lens matter distribution for each cluster bin. The
likelihood is again given by equation (17), where χ2 is now

χ2 =
Nbin∑
i=1

Nbin∑
j=1

[Mobs,i − Mmod,i] C−1
M,ij [Mobs,j − Mmod,j ]. (27)

In the previous equation, the sums run over the Nbin cluster bins,
Mobs is the measured M200, Mmod is the M200 derived from the scaling
relation and CM,ij is given by equation (26). The priors are uniform
with ranges given by −1 < α < 1, 0.1 < β < 5, and −5 < γ <

5. Also in this case, we used MULTINEST for the derivation of the
parameters and the quoted results are the mean and the standard
deviation of the marginal posterior distribution.

8 R ESULTS

8.1 Mass–amplitude relation

We divide the cluster sample presented in Section 2.1 in three
redshift intervals: 0.1 ≤ z < 0.3, 0.3 ≤ z < 0.45, 0.45 ≤ z < 0.6.
Each of them is then additionally sub-divided in amplitude, creating
5, 5, and 4 amplitude bins, respectively, for a total of 14 redshift-
amplitude bins. For each bin, we extract the stacked shear profile
and we derive a mass estimate from it, as detailed in Sections 3–5.
The results are shown in Fig. 8 and reported in Table 2. We can
see there is a clear correlation between excess surface density and
amplitude in each redshift range. Typically, the most likely model
describes well the data in the radial range 0.2 < R < 3 Mpc h−1 used
in the analysis, as confirmed by the χ2 values shown in Table 2.

We then use the masses derived for each amplitude-redshift
cluster bin to constrain the mass–amplitude relation (equation 23).
We set zpiv = 0.35 and Apiv = 2, as these are central values in the
ranges covered by the whole sample. Following the analysis detailed
in Section 7, we derive the parameters describing the intercept α,

the slope β and the redshift evolution γ of the mass–amplitude
relation. The results are:

(i) α = 0.114 ± 0.038
(ii) β = 1.99 ± 0.10
(iii) γ = 0.73 ± 0.63

The resulting relation for three typical redshift values (z = 0.21,
0.37, 0.50) is shown in Fig. 9, together with the mass–amplitude
data points derived from the analysis.

The mass–amplitude relation is linear across the redshift and
amplitude range covered by the sample. It is remarkable that the
same mass–amplitude relation fits the data well for more than one
order of magnitude in mass, down to M200 ∼ 2 (5) ×1013 M� h−1 at
z = 0.2 (0.5). There is no sign that clusters in different amplitude
regimes follow different relations, that could come, for instance,
from fake detections contaminating the low A samples. The slope
of the mass–amplitude relation is compatible with the slope of
the inverse relation (amplitude–mass) ∼0.54 ± 0.04 derived from
simulations in Bellagamba et al. (2018). The relation is compatible
with being time-independent at the 1σ level.

We note that systematic errors dominate in determining the
uncertainties in the intercept α, while being negligible for β and
γ .

8.2 Mass–richness relation

AMICO assigns to each galaxy a probability of being part of any
detected structure, according to equation (2). The tests performed
in Bellagamba et al. (2018; see Fig. 8) show that if the cluster
model is a good description of the mean properties of the clusters
in the data, the retrieved probability describes remarkably well the
true statistical membership in the catalogue. As a consequence,
under the same assumption, the sum of membership probabilities
for each structure will roughly correspond to the number of visible
members. In principle, this quantity can be used as a mass proxy,
but it is severely redshift-dependent, because the faint members will
go beyond the survey limiting magnitude as the redshift increases.
In order to remove the intrinsic redshift dependence, we need to
consider a consistent sample of members, i.e. one that is observable
over all the considered redshift range.

We then define the richness λ*
j of the jth detection as

λ*
j =

Ngal∑
i=1

P (i ∈ j )Fij , (28)

where Fij selects the galaxies according to

Fij =
{

1, if mi < m*(zj ) + 1.5 and Ri < R200(zj )
0, otherwise.

(29)

and P(i ∈ j) is given by equation (2). In the previous equation, m∗
and R200 are parameters of the model presented in Maturi et al.
(2018) and zj is the redshift of the detection. As will be discussed
in Section 9.2, this definition of richness has similarities with those
used by other cluster finders such as redMaPPer (Rykoff et al. 2014)
and RedGOLD (Licitra et al. 2016). The upper limit at m∗ + 1.5
is brighter than the magnitude limit of the survey at all redshifts
covered by clusters in this work. In this way, we define a λ∗ for
each detection.

We then proceed similarly to Section 8.1, this time considering
the richness λ∗ as the observable instead of the amplitude A. We
thus bin the clusters according to their redshift and their λ∗, and
we get again 14 redshift-richness bins. The resulting weak lensing
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Figure 8. Stacked profiles for �	(R) in different bins of amplitude and redshift. Redshift increases from top to bottom, amplitude increases from left to right.
Details of the properties for each bin can be found in Table 2. In each box, the curve represents the model with mean posterior parameters. Empty squares
represent data inside 0.2 Mpc h−1 neglected in the fitting procedure.

Table 2. Cluster binning used for the analysis presented in Section 8.1. The typical quantities zeff and Aeff are computed
according to equation (24). For M200, we quote the mean and the standard deviation of the posterior probability
distribution. Ncl is the number of clusters in the bin. The number of degrees of freedom for χ2 comparison is 11 (data
points) − 4 (parameters) = 7.

z range zeff A range Aeff M200(1014 M� h−1) Ncl χ2

[0.10,0.30] 0.190 ± 0.002 [0,1] 0.830 ± 0.003 0.145 ± 0.029 1066 12.4
[0.10,0.30] 0.207 ± 0.002 [1,1.55] 1.213 ± 0.006 0.325 ± 0.054 822 11.3
[0.10,0.30] 0.212 ± 0.004 [1.55,2.05] 1.762 ± 0.010 1.091 ± 0.144 240 6.0
[0.10,0.30] 0.226 ± 0.005 [2.05,2.75] 2.350 ± 0.021 1.584 ± 0.233 96 2.5
[0.10,0.30] 0.211 ± 0.008 [2.75,6.5] 3.259 ± 0.084 3.450 ± 0.429 41 11.7

[0.30,0.45] 0.378 ± 0.001 [0,1.15] 0.954 ± 0.004 0.376 ± 0.061 1090 9.6
[0.30,0.45] 0.382 ± 0.002 [1.15,1.65] 1.354 ± 0.006 0.686 ± 0.115 762 3.6
[0.30,0.45] 0.385 ± 0.002 [1.65,2.3] 1.909 ± 0.012 1.485 ± 0.188 339 6.1
[0.30,0.45] 0.392 ± 0.004 [2.3,3] 2.585 ± 0.022 2.079 ± 0.360 98 5.4
[0.30,0.45] 0.377 ± 0.007 [3,6.5] 3.577 ± 0.071 4.114 ± 0.558 43 12.0

[0.45,0.60] 0.496 ± 0.001 [0,1.3] 1.108 ± 0.004 0.469 ± 0.087 984 6.3
[0.45,0.60] 0.516 ± 0.002 [1.3,1.8] 1.516 ± 0.005 0.711 ± 0.114 889 8.8
[0.45,0.60] 0.515 ± 0.003 [1.8,2.3] 2.071 ± 0.011 1.358 ± 0.244 373 23.3
[0.45,0.60] 0.510 ± 0.004 [2.3,6.5] 2.877 ± 0.039 2.120 ± 0.396 119 9.3

profiles for each cluster bin and the corresponding weak lensing
masses are given in Fig. 10 and in Table 3. The results are then
used to constrain the mass–richness relation (equation 23), with zpiv

= 0.35 and λ*
piv = 30. This time, the resulting parameters are:

(i) α = 0.004 ± 0.038
(ii) β = 1.71 ± 0.08

(iii) γ = −1.33 ± 0.64.

The relation between richness and weak lensing mass is shown in
Fig. 11.

As in the case of the mass–amplitude relation, the mass–richness
linear relation holds well for all redshifts and all richnesses in
the sample, down to the low-mass limit of the cluster sample.
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1610 F. Bellagamba et al.

Figure 9. Weak lensing mass of the stacked shear profile as a function
of amplitude, in different redshift bins. The vertical error bars represents
the errors derived from the posterior distribution plus the systematic
uncertainties. The mass–amplitude relation (equation 23) is shown for the
typical redshift of each redshift bin (0.21, 0.37, 0.50).

The most notable difference with respect to the relation between
amplitude and mass is that the slope β is shallower (1.71 versus
1.99). Qualitatively, this corresponds to a steeper dependence of
the richness on the mass in comparison to the amplitude. There is
also a 2σ trend towards a lower mass for higher redshift clusters at
fixed richness, driven by the highest redshift bin. As in the mass–
amplitude relation, the uncertainty on the intercept α is dominated
by systematical uncertainties, while their effect is small on β and
γ .

As the catalogue of clusters has been selected in S/N (proportional
to A) and not on λ∗, we note that selection effects may influence the
lowest λ∗ bin at each redshift, i.e. objects with equivalent λ∗ but
amplitude below the threshold did not enter the catalogue and are
thus excluded from this derivation. As a consequence, the scaling
relation we derived is strictly valid only for a sample of clusters
selected according to AMICO criteria.

9 D ISCUSSION

9.1 Comparison of the two observables

The two observables analysed in Sections 8.1 and 8.2 are connected
but different in nature. The amplitude A is a measure of abundance
of galaxies in units of the input cluster model. It is obtained by
convolving the observed galaxy distribution with an optimal filter,
which maximizes the S/N of the detection. In its calculation, each
galaxy is weighted by a function that depends on the ratio between
the assumed cluster model and the background distribution (see
equation 1). The amplitude proved to be an unbiased mass proxy in
simulations where the model describes the mean properties of the
clusters and the galaxies’ p(z) follow a simple Gaussian distribution
with a realistic dispersion (Bellagamba et al. 2018). In this analysis
on real data, we confirmed that the amplitude is an efficient mass
proxy over all the considered redshift and mass ranges.

The richness λ∗ defined in Section 8.2 is the sum of membership
probabilities inside redshift-independent ranges in magnitude and
radius. It is clearly connected to the amplitude by construction
through equation (2), and this is reflected in the clear correlation
shown in Fig. 12. With respect to the amplitude A, the richness λ∗
has the advantage of being less dependent on the assumed cluster

model. First of all, the membership probability is proportional
to the product of A and the model, which is independent of
the input normalization of the model. Then, the weight of each
galaxy in λ∗ is by construction limited by 1, coherently with the
definition of probability: this means that, while it is possible for
the amplitude A to be boosted by a small number of galaxies with
an especially high weight, the effect of the same galaxies in the
richness calculation would be significant but moderate. Finally, the
values of λ∗ calculated according to equations (28) and (29) can be
reasonably extrapolated to other galaxy selections and compared to
those extracted assuming other cluster models.

On the other hand, the amplitude A is the primary observable
of AMICO and has proven to be very effective in the detection
procedure on mock and real data (Bellagamba et al. 2018; Maturi
et al. 2018), as it filters the data with an appropriate weight on a
cluster scale. The selection function in terms of A is simpler to model
with respect to the one in λ∗, because the detection threshold in the
cluster catalogue is defined in terms of S/N = A/σ A. This may be
convenient especially if one wants to use the cluster catalogue and
its calibration for cosmological purposes, when a precise knowledge
of the selection function is mandatory.

9.2 Comparison with literature

This is the first mass calibration of the cluster observables provided
by AMICO, so there is no previous work to which we can directly
compare our results. Not only the mass proxies we employed in this
analysis have never been calibrated with different mass estimates
on real data, but the very sample of clusters may have different
properties with respect to the ones detected with other algorithms.
Anyway, we can compare with previous works on three aspects:
the properties of the observables, the slope of the mass–observable
relation, and the mass range covered by the calibration.

9.2.1 Properties of the observables

The amplitude A is derived by AMICO following equation (1). The
convolution with a cluster-sized kernel is typical of matched filters,
but other cluster finders do not quote their result as an observable.
For example, Ford et al. (2015), when performing a calibration of
the clusters detected with the 3D-MF algorithm (Milkeraitis et al.
2010), used as observable an estimate of N200 calculated a posteriori.
We have shown that the AMICO amplitude is indeed a reliable mass
proxy, providing the first mass calibration on real data of this kind
of observable.

The richness λ∗ is more similar to known cluster observables in
literature, as for example the richnesses calculated by cluster finding
algorithms such as redMaPPer (Rykoff et al. 2014) and RedGOLD
(Licitra et al. 2016). We share the idea of counting galaxies inside
a given radius from the cluster centre, weighed by their probability
of being cluster members. There are two main differences with
respect to these works: we do not perform any cut based on the
galaxy colour, instead of selecting red galaxies only, and we use a
constant limiting radius for all clusters at the same redshift, instead
of estimating the cluster r200 on the same data.

9.2.2 Slope of the mass–observable relation

The slopes we derived for the mass–amplitude relation (1.99 ± 0.10)
and the mass–richness relation (1.71 ± 0.08) are significantly larger
than typical results in literature about calibration of photometric
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Figure 10. Stacked profiles for �	(R) in different bins of richness λ∗ and redshift. Redshift increases from top to bottom, richness increases from left to
right. Details of the properties for each bin can be found in Table 3. In each box, the curve represents the model with mean posterior parameters. Empty squares
represent data inside 0.2 Mpc h−1 neglected in the fitting procedure.

Table 3. Cluster binning used for the analysis presented in Section 8.2. The typical quantities zeff and λ*
eff are computed

according to equation (24). For M200, we quote the mean and the standard deviation of the posterior probability
distribution. Ncl is the number of clusters in the bin. The number of degrees of freedom for χ2 comparison is 11 (data
points) − 4 (parameters) = 7.

z range zeff λ∗ range λ∗eff M200(1014 M� h−1) Ncl χ2

[0.10,0.30] 0.189 ± 0.001 [0,15] 10.20 ± 0.09 0.165 ± 0.026 1246 9.8
[0.10,0.30] 0.212 ± 0.002 [15,25] 18.88 ± 0.12 0.383 ± 0.062 684 5.5
[0.10,0.30] 0.223 ± 0.004 [25,35] 29.02 ± 0.21 1.070 ± 0.163 209 20.1
[0.10,0.30] 0.228 ± 0.007 [35,45] 39.75 ± 0.32 2.027 ± 0.297 82 10.1
[0.10,0.30] 0.222 ± 0.008 [45,150] 56.59 ± 2.20 3.222 ± 0.413 44 11.0

[0.30,0.45] 0.374 ± 0.001 [0,20] 15.10 ± 0.11 0.355 ± 0.056 1113 10.0
[0.30,0.45] 0.388 ± 0.002 [20,30] 24.08 ± 0.11 0.788 ± 0.112 767 7.1
[0.30,0.45] 0.389 ± 0.002 [30,45] 35.91 ± 0.27 1.509 ± 0.210 320 4.0
[0.30,0.45] 0.390 ± 0.005 [45,60] 50.88 ± 0.50 2.341 ± 0.413 87 5.3
[0.30,0.45] 0.379 ± 0.006 [60,150] 73.60 ± 2.09 4.487 ± 0.605 45 7.8

[0.45,0.60] 0.498 ± 0.001 [0,25] 19.71 ± 0.11 0.410 ± 0.084 1108 3.5
[0.45,0.60] 0.514 ± 0.002 [25,35] 29.23 ± 0.12 0.759 ± 0.115 761 14.3
[0.45,0.60] 0.523 ± 0.003 [35,45] 39.25 ± 0.18 1.475 ± 0.242 299 11.7
[0.45,0.60] 0.513 ± 0.004 [45,150] 55.12 ± 0.76 2.119 ± 0.346 197 13.7

observables. For example, the logarithmic dependence of the weak
lensing mass on the richness λ provided by redMaPPer has been
found to be 1.12 ± 0.26 in Melchior et al. (2017) and 1.33+0.09

−0.10

by Simet et al. (2017), while Parroni et al. (2017) derived a slope
1.02 ± 0.21 for the calibration of RedGOLD λ. This likely depends
on the fact that AMICO uses a fixed radius in the definition of its

observables, as already discussed in section 5.3 of Bellagamba et al.
(2018): clusters bigger than the model are cut by the kernel, smaller
ones are slightly enhanced by correlated large-scale structure. In
fact, a similarly steep slope is found in Tudorica et al. (2017), which
calibrates SpARCS clusters using as an observable Nred, the number
of red galaxies in a fixed aperture (500 kpc). We note however that
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Figure 11. Weak lensingmass of the stacked shear profile as a function of
richness λ∗, in different redshift bins. The vertical error bars represents
the errors derived from the posterior distribution plus the systematic
uncertainties. The mass–richness relation (equation 23) is shown for the
typical redshift of each redshift bin (0.21, 0.37, 0.50).

Figure 12. Relation between amplitude and λ∗ for the cluster sample. Point
colours reflect the cluster redshift (0.1 ≤ z<0.3 in red, 0.3 ≤ z<0.45 in blue,
0.45 ≤ z<0.6 in black). To limit confusion, only one every five clusters is
plotted.

the slope of the mass–richness relation is flatter than the one of the
mass–amplitude relation, indicating that this feature is less relevant
for λ∗. This is expected, as the estimation of λ∗ is less dependent
on the assumed model, and closer to the properties of the actual
galaxy distribution in the data (see Section 9.1).

9.2.3 Mass range of the calibration

In this work, we calibrated the cluster sample extracted by AMICO
on KiDS DR3 data (Maturi et al. 2018) down to a M200 equal
to 0.2 × 1014 M� h−1 at z = 0.2 and to 0.5 × 1014 M� h−1 at
z = 0.5. This is competitive with the most up-to-date efforts for
cluster detection at intermediate redshifts on photometric data. For
comparison, Melchior et al. (2017) shows the mass calibration of
redMaPPer clusters detected on DES data at redshifts 0.2 ≤ z ≤ 0.8.
Their results are computed only on the high richness sample (λ
> 20), and extrapolate well down to λ ≥ 14, which corresponds

to M200 ∼ 0.55 × 1014 M� h−1.2 The catalogue extracted from the
RCS2 survey is calibrated by van Uitert et al. (2016b) down to
∼0.4 × 1014 M� h−1 at z ≤ 0.8 via a post-processing estimation
of N200. The RedGOLD sample detected on CFHTLS and NGVS
is calibrated down to M200 ∼ 0.7 × 1014 M� h−1 (Parroni et al.
2017).

1 0 S U M M A RY A N D C O N C L U S I O N S

Mass calibration of optically detected galaxy clusters is fundamental
for their astrophysical and cosmological exploitation. In this work
we derived, for the first time, weak lensing masses for clusters
detected by AMICO on KiDS data (Maturi et al. 2018). The sample
comprises 6962 galaxy clusters at redshifts between 0.1 and 0.6.
Using KiDS shear data, we performed a stacked weak lensing
analysis for ensembles of clusters selected according to their redshift
and amplitude A, the optical mass proxy provided by AMICO. The
amplitude is an estimate of the abundance of galaxies in units of an
input cluster model, which was found to be a robust mass proxy on
simulations in Bellagamba et al. (2018).

From a sample of background galaxies selected according to
photo-zs and colours (see Section 3.1), we derived the stacked
weak lensing signal for each bin in amplitude and redshift. We
modelled the weak lensing signal as a truncated NFW distribution,
plus a two-halo term that describes the correlated matter around
the cluster. In the analysis, we considered the radial region between
0.2 and 3 Mpc h−1, to minimize uncertainties due to contribution
by the BCG and the large-scale structure. The best parameters (and
their errors) for each weak lensing profile were derived with a
Bayesian Nested Sampling algorithm, MULTINEST. The priors on
concentration and fraction of miscentred haloes were kept wide and
conservative by choice, to marginalize over modelling uncertainties
in the determination of the mean halo mass M200.

We found a clear weak lensing signal for all cluster bins in redshift
and amplitude, and constructed a robust mass–amplitude relation. In
its derivation, in addition to statistical errors, we took into account
systematic uncertainties related to the possible contamination of
the background sample, the photo-z estimate of each galaxy and the
shear measurement. The resulting relation between amplitude and
mass is

log
M200

1014 M� h−1
= α + β log

A

Apiv
+ γ log

E(z)

E(zpiv)
, (30)

with parameters α = 0.114 ± 0.038, β = 1.99 ± 0.10, and γ =
0.73 ± 0.63, given Apiv = 2 and zpiv = 0.35. The slope β is
compatible to the results obtained by Bellagamba et al. (2018) on
simulations. The relation given by equation (30) holds for the whole
redshift and amplitude ranges covered by the sample.

In addition, we repeated the same analysis based on a second
observable: the cluster richness λ∗, defined from the membership
probability as provided by AMICO. In order to define a redshift-
independent mass proxy, we selected members inside consistent
ranges in radius and magnitude, specifically R < R200 and m < m∗
+ 1.5, where R200 and m∗ are redshift-dependent quantities defined
according to our model (see Maturi et al. 2018). The resulting mass–

2In Melchior et al. (2017) masses are given as M200,m in units of M�. The
conversion in terms of M200,c assumes c200 = 4 and is roughly valid over
0.2 < z < 0.6, the common redshift range among the two analyses.
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richness relation is given by

log
M200

1014 M� h−1
= α + β log

λ*

λ*
piv

+ γ log
E(z)

E(zpiv)
, (31)

with parameters α = 0.004 ± 0.038, β = 1.71 ± 0.08, and γ =
−1.33 ± 0.64, given λ*

piv = 30 and zpiv = 0.35. The slope is
flatter than the one for the mass–amplitude relation. The richness
λ∗ should be less affected by limits in the modelling than A, and
easier to compare among different surveys/models.

In this work, we derived two consistent mass calibrations for the
sample of clusters derived by AMICO on KiDS data and presented
in Maturi et al. (2018). These results confirm that AMICO is able
to detect structures down to few 1013 M� h−1 in the KiDS data, and
to provide a reliable mass proxy for each of them. The application
of the same recipes to future KiDS Data Releases will provide one
of the largest and deepest cluster samples with mass calibration
available to date.
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Broadhurst T., Takada M., Umetsu K., Kong X., Arimoto N., Chiba M.,

Futamase T., 2005, ApJ, 619, L143
Brouwer M. M. et al., 2018, MNRAS, 481, 5189
Capaccioli M., Schipani P., 2011, The Messenger, 146, 2
Coe D., Benı́tez N., Sánchez S. F., Jee M., Bouwens R., Ford H., 2006, AJ,

132, 926
Covone G., Sereno M., Kilbinger M., Cardone V. F., 2014, ApJ, 784, L25
de Jong J. T. A. et al., 2013, The Messenger, 154, 44
de Jong J. T. A. et al., 2017, A&A, 604, A134
Dietrich J. P. et al., 2014, MNRAS, 443, 1713
Driver S. P. et al., 2011, MNRAS, 413, 971
Eisenstein D. J., Hu W., 1999, ApJ, 511, 5
Fenech Conti I., Herbonnet R., Hoekstra H., Merten J., Miller L., Viola M.,

2017, MNRAS, 467, 1627
Feroz F., Hobson M. P., Bridges M., 2009, MNRAS, 398, 1601
Feroz F., Hobson M. P., Cameron E., Pettitt A. N., 2013, preprint (arXiv:

1306.2144)

Ford J. et al., 2015, MNRAS, 447, 1304
George M. R. et al., 2012, ApJ, 757, 2
Gruen D. et al., 2014, MNRAS, 442, 1507
Hartlap J., Simon P., Schneider P., 2007, A&A, 464, 399
Hennig C. et al., 2017, MNRAS, 467, 4015
Heymans C. et al., 2012, MNRAS, 427, 146
Heymans C., Heavens A., 2003, MNRAS, 339, 711
Hildebrandt H. et al., 2012, MNRAS, 421, 2355
Hildebrandt H. et al., 2016, MNRAS, 463, 635
Hildebrandt H. et al., 2017, MNRAS, 465, 1454
Ilbert O. et al., 2009, ApJ, 690, 1236
Johnston D. E. et al., 2007, preprint (arXiv:0709.1159)
Kuijken K. et al., 2015, MNRAS, 454, 3500
Kuijken K., 2011, The Messenger, 146, 8
Laigle C. et al., 2016, ApJS, 224, 24
Laureijs R. et al., 2011, preprint (arXiv:1110.3193)
Licitra R., Mei S., Raichoor A., Erben T., Hildebrandt H., 2016, MNRAS,

455, 3020
Lima M., Cunha C. E., Oyaizu H., Frieman J., Lin H., Sheldon E. S., 2008,

MNRAS, 390, 118
Liske J. et al., 2015, MNRAS, 452, 2087
Mandelbaum R., Slosar A., Baldauf T., Seljak U., Hirata C. M., Nakajima

R., Reyes R., Smith R. E., 2013, MNRAS, 432, 1544
Maturi M., Bellagamba F., Radovich M., Roncarelli M., Sereno M.,

Moscardini L., Bardelli S., Puddu E., 2018, preprint (arXiv:1810.02811)
McClintock T. et al., 2018, MNRAS, 482, 1352
McFarland J. P., Verdoes-Kleijn G., Sikkema G., Helmich E. M., Boxhoorn

D. R., Valentijn E. A., 2013, Exp. Astron., 35, 45
Medezinski E. et al., 2007, ApJ, 663, 717
Medezinski E. et al., 2017, PASJ, 70, S28
Medezinski E. et al., 2018, PASJ, 70, 30
Medezinski E., Broadhurst T., Umetsu K., Oguri M., Rephaeli Y., Benı́tez

N., 2010, MNRAS, 405, 257
Melchior P. et al., 2015, MNRAS, 449, 2219
Melchior P. et al., 2017, MNRAS, 469, 4899
Milkeraitis M., van Waerbeke L., Heymans C., Hildebrandt H., Dietrich J.

P., Erben T., 2010, MNRAS, 406, 673
Miller L. et al., 2013, MNRAS, 429, 2858
Miller L., Kitching T. D., Heymans C., Heavens A. F., van Waerbeke L.,

2007, MNRAS, 382, 315
Miyatake H. et al., 2018, preprint (arXiv:1804.05873)
Mulroy S. L. et al., 2014, MNRAS, 443, 3309
Oguri M. et al., 2018, PASJ, 70, S20
Oguri M., Hamana T., 2011, MNRAS, 414, 1851
Oguri M., Takada M., 2011, Phys. Rev. D, 83, 023008
Oguri M., Bayliss M. B., Dahle H., Sharon K., Gladders M. D., Natarajan

P., Hennawi J. F., Koester B. P., 2012, MNRAS, 420, 3213
Parroni C. et al., 2017, ApJ, 848, 114
Pereira M. E. S. et al., 2018, MNRAS, 474, 1361
Radovich M. et al., 2017, A&A, 598, A107
Rykoff E. S. et al., 2012, ApJ, 746, 178
Rykoff E. S. et al., 2014, ApJ, 785, 104
Rykoff E. S. et al., 2016, ApJS, 224, 1
Sereno M. et al., 2018a, Nature Astronomy, 2, 744
Sereno M., Ettori S., 2015, MNRAS, 450, 3675
Sereno M., Veropalumbo A., Marulli F., Covone G., Moscardini L., Cimatti

A., 2015, MNRAS, 449, 4147
Sereno M., Fedeli C., Moscardini L., 2016, J. Cosmol. Astropart. Phys., 1,

042
Sereno M., Covone G., Izzo L., Ettori S., Coupon J., Lieu M., 2017, MNRAS,

472, 1946
Sereno M., Umetsu K., Ettori S., Sayers J., Chiu I.-N., Meneghetti M.,

Vega-Ferrero J., Zitrin A., 2018b, ApJ, 860, L4
Sheldon E. S. et al., 2004, AJ, 127, 2544
Sifón C. et al., 2015, MNRAS, 454, 3938
Simet M., McClintock T., Mandelbaum R., Rozo E., Rykoff E., Sheldon E.,

Wechsler R. H., 2017, MNRAS, 466, 3103

MNRAS 484, 1598–1615 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/484/2/1598/5289902 by IN
AF –IASF Bologna user on 08 M

arch 2019

http://dx.doi.org/10.1111/j.1365-2966.2010.16406.x
http://dx.doi.org/10.1093/mnras/stt2129
http://dx.doi.org/10.1088/1475-7516/2009/01/015
http://dx.doi.org/10.1016/S0370-1573(00)00082-X
http://dx.doi.org/10.1111/j.1365-2966.2011.18202.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20632.x
http://dx.doi.org/10.1093/mnras/stx2701
http://dx.doi.org/10.1086/308947
http://dx.doi.org/10.1093/mnras/stt1761
http://dx.doi.org/10.1086/428122
http://dx.doi.org/10.1086/505530
http://dx.doi.org/10.1088/2041-8205/784/2/L25
http://dx.doi.org/10.1051/0004-6361/201730747
http://dx.doi.org/10.1093/mnras/stu1282
http://dx.doi.org/10.1111/j.1365-2966.2010.18188.x
http://dx.doi.org/10.1086/306640
http://dx.doi.org/10.1093/mnras/stx200
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://adsabs.harvard.edu/abs/2013arXiv1306.2144F
http://dx.doi.org/10.1093/mnras/stu2545
http://dx.doi.org/10.1088/0004-637X/757/1/2
http://dx.doi.org/10.1093/mnras/stu949
http://dx.doi.org/10.1051/0004-6361:20066170
http://dx.doi.org/10.1093/mnras/stx175
http://dx.doi.org/10.1111/j.1365-2966.2012.21952.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06213.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20468.x
http://dx.doi.org/10.1093/mnras/stw2013
http://dx.doi.org/10.1093/mnras/stw2805
http://dx.doi.org/10.1088/0004-637X/690/2/1236
http://adsabs.harvard.edu/abs/2007arXiv0709.1159J
http://dx.doi.org/10.1093/mnras/stv2140
http://dx.doi.org/10.3847/0067-0049/224/2/24
http://adsabs.harvard.edu/abs/2011arXiv1110.3193L
http://dx.doi.org/10.1093/mnras/stv2309
http://dx.doi.org/10.1111/j.1365-2966.2008.13510.x
http://dx.doi.org/10.1093/mnras/stv1436
http://dx.doi.org/10.1093/mnras/stt572
http://adsabs.harvard.edu/abs/2018arXiv181002811M
http://dx.doi.org/10.1007/s10686-011-9266-x
http://dx.doi.org/10.1086/518638
http://dx.doi.org/10.1093/pasj/psy009
http://dx.doi.org/10.1111/j.1365-2966.2010.16491.x
http://dx.doi.org/10.1093/mnras/stv398
http://dx.doi.org/10.1093/mnras/stx1053
http://dx.doi.org/10.1111/j.1365-2966.2010.16720.x
http://dx.doi.org/10.1093/mnras/sts454
http://dx.doi.org/10.1111/j.1365-2966.2007.12363.x
http://adsabs.harvard.edu/abs/2018arXiv180405873M
http://dx.doi.org/10.1093/mnras/stu1387
http://dx.doi.org/10.1093/pasj/psx042
http://dx.doi.org/10.1111/j.1365-2966.2011.18481.x
http://dx.doi.org/10.1103/PhysRevD.83.023008
http://dx.doi.org/10.1111/j.1365-2966.2011.20248.x
http://dx.doi.org/10.3847/1538-4357/aa8b6c
http://dx.doi.org/10.1093/mnras/stx2831
http://dx.doi.org/10.1051/0004-6361/201629353
http://dx.doi.org/10.1088/0004-637X/746/2/178
http://dx.doi.org/10.1088/0004-637X/785/2/104
http://dx.doi.org/10.3847/0067-0049/224/1/1
http://dx.doi.org/10.1038/s41550-018-0508-y
http://dx.doi.org/10.1093/mnras/stv814
http://dx.doi.org/10.1093/mnras/stv280
http://dx.doi.org/10.1088/1475-7516/2016/01/042
http://dx.doi.org/10.1093/mnras/stx2085
http://dx.doi.org/10.3847/2041-8213/aac6d9
http://dx.doi.org/10.1086/383293
http://dx.doi.org/10.1093/mnras/stv2051
http://dx.doi.org/10.1093/mnras/stw3250


1614 F. Bellagamba et al.

Tinker J. L., Robertson B. E., Kravtsov A. V., Klypin A., Warren M. S.,
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A P P E N D I X A : BAC K G RO U N D S E L E C T I O N

The selection of background galaxies described in Section 3.1 is
done with two complementary methods: we select galaxies with
robust photometric redshifts in a favourable z range, and those lying
in a high-z region of the gri colour–colour plot. As an additional
check, we compare the excess density obtained by employing only
one method at a time, as shown in Fig. A1. The figure refers to the
stacked profile for all clusters with 0.1 < z < 0.3. The shear profiles
are clearly consistent with each other at all radii. For higher redshift
clusters, the signal obtained by selecting galaxies through the p(z)
is almost negligible in comparison to the colour–colour selection,
and this makes the comparison less meaningful.

APPENDIX B: LENS-SOURCE ANGULAR
CROSS-CORRELATION

In principle, the spatial distribution of background sources should
be uncorrelated from the position of the clusters, if physically
associated galaxies are excluded. If some cluster galaxies enter
the background sample, the number density of background sources
should increase towards the lens centre (Applegate et al. 2014; Mel-
chior et al. 2015). Due to our conservative selection of background
galaxies, we do not expect a significant contamination from cluster
galaxies, as confirmed by the tests performed in Section 6.1. As
an additional test, we compute the radial cross-correlation ωls(R)

Figure A1. Total �	(R) for allthe clusters at 0.1 < z < 0.3 in the catalogue,
for the different background selection criteria: p(z) selection in red, colour
selection in blue. In black, the signal from the full background sample. The
data points are slightly offset along the x-axis for clarity.

Figure B1. Radial cross correlation ωls between lenses and sources for
the background sample we used in the analysis (red points) and for a
source selection based on the most likely redshift only (in blue). The errors
are estimated assuming a Poissonian statistics on the counts. The dashed
horizontal line marks ωls = 0.

between lenses and background sources, making use of a random
shear catalogue based on the KiDS-450 masks. The radial cross-
correlation is estimated as

ωls(R) = Nrand

Nsrc

Cls(R)

Clr(R)
− 1, (B1)

where Nsrc and Nrand are the total number of galaxies in the
background and in the random sample, respectively, and Cls(R) and
Clr(R) are the number of galaxies at a radial projected distance
R from a lens in the background and in the random sample,
respectively.

In Fig. B1, we show in red the results for the background sample
we used in the analysis. The radial distribution of background
sources is compatible with being uncorrelated with the lens posi-
tions at per cent level. The observable decrement towards the centre
of the cluster is likely to be due to the obscuration of background
sources by cluster galaxies (Applegate et al. 2014). For comparison,
in blue we show the cross-correlation for a different source selection:
instead of the background sample, we calculated equation (B1) for
all the sources with redshift zs > zl + 0.05. In this case, we obtain
the expected increment towards the centre as more cluster galaxies
with an overestimated redshift zs enter in Cls. This test confirms
that our selection of the background sample removes a significant
contamination from cluster galaxies.

APPENDI X C : NULL TESTS

To exclude any significant contamination of the recovered profiles
by non-lensing signal, which would arise e.g. from an imperfect
modelling of the PSF, we compute the cross-component of the
stacked shear signal, defined as �	×(R) = 	critγ ×, where γ × is
the component of the shear directed at 45 deg from the centre of the
cluster. This so-called B mode should be consistent with zero if the
signal we measure comes from gravitational lensing. The results are
shown in Fig. C1, where we multiplied �	× by R, for visualisation
purposes. The signal does not show any significant deviation from
zero over all the radial range considered in the analysis. Assuming
a null signal, the resulting χ2 value is 9.94 for 14 degrees of
freedom.

Another way to check for systematics is to measure the shear
profile around random points in the data field. To this purpose,
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Figure C1. Total R�	×(R), obtainedby stacking all the clusters in the
catalogue. Vertical error bars represent the square root of the diagonal
elements of the covariance matrix.

we created a mock cluster catalogue with the same redshift and
amplitude distribution as the one presented in Section 2.1, but with
random positions inside the survey footprint. We then repeated the
analysis performed on real objects and we extracted the stacked
shear profile and its cross-component, shown in Fig. C2. Also in
this case, the signal is compatible with zero, indicating there is no
residual systematics in the data. Assuming a null signal, the resulting

Figure C2. In red, the stacked R�	(R) around random points with the same
redshift distribution as the cluster sample. In blue, the corresponding stacked
R�	×(R). Points have been slightly shifted on the x-axis for visibility.
Vertical error bars represent the square root of the diagonal elements of the
covariance matrix.

χ2 values are 11.77 and 8.44 for 14 degrees of freedom. The cross-
component around random position is in remarkable agreement
with the measurement at the cluster position, further stressing that
systematics are well under control.
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